
J .  FZuid Meeh. (1983), wol. 131, p p .  305-317 

Printed in Great Britain 
305 

The calculation of separation bubbles in interactive 
turbulent boundary layers 

By TUNCER CEBECI 

AND S U Z A N N E  M. SCHIMKE 

Mechanical Engineering Department, California State University, Long Beach, California 

Aerodynamics Research Department, Douglas Aircraft Company, Long Beach, California 

(Received 1 1  October 1982) 

A viscous-inviscid interaction procedure is presented for computing incompressible 
separation bubbles in two-dimensional flows. The analysis consists of the solution of 
the inviscid-flow equations with a conformal-mapping method and the solution of the 
boundary-layer equations with an inverse procedure. The boundary-layer equations 
employ the Cebeci-Smith algebraic eddy-viscosity formulation. The coupling between 
the inviscid and boundary-layer equations is established through the Hilbert integral 
by using Veldman’s suggestion. An empirical method is used to calculate the location 
of transition, which is found to play a key role in predicting the behaviour of 
separating flows. Numerical solutions are presented for transitional bubbles on an 
NACA 66,-018 airfoil a t  two angles of attack for a chord Reynolds number of 2 x lo6. 
Comparisons wth experiment show that the flow properties of the separation bubbles 
can be predicted very well with this procedure provided that an accurate estimate 
of transition location is made. 

1. Introduction 
According to  experiment, one form of airfoil stall stems from local regions of 

separated flow which originate when a laminar boundary layer separates from a 
surface. I n  the early stages of stall when the flow does not completely separate, 
transition to turbulent flow takes place in the detached boundary layer a short 
distance downstream from separation, and the flow is subsequently reestablished on 
the surface as a turbulent boundary layer. The region between the laminar separation 
and turbulent reattachment is commonly termed the ‘laminar-separation bubble ’. 

The appearance of bubbles on airfoils often signifies that the airfoils are about to 
stall and this, in turn, may be associated with the bursting of the bubbles. The review 
of bubble separations by Tani (1964) is still a valuable starting point for any 
investigation. He showed that the sequence of events from the first appearance of 
separation on the upper surface to  the bursting of the bubble is complicated and is 
particularly dependent on the geometric properties of the airfoil and the chord 
Reynolds number R,. Although bubbles may be found on thin airfoils near the leading 
edge (short bubbles), they have also been observed near midchord on comparatively 
thick airfoils (long bubbles) for angles of attack near 0’ (see Burshall & Loftin 1951 ; 
Gault 1955). For short bubbles, i t  is necessary that R, not be too small, otherwise 
laminar separation, when i t  occurs, will not be followed by reattachment ; a t  higher 
values of R,, transition occurs in the separated boundary layer, which then reattaches 
as a turbulent boundary layer. With an increase in the angle of attack, separation 
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moves towards the leading edge and eventually the bubble bursts without reattach- 
ment of the turbulent boundary layer causing the airfoil to  stall. In  the case of long 
bubbles, the Reynolds number is sufficiently large so that, if there is laminar 
separation, transition occurs in the separated boundary layer, which then reattaches 
as a turbulent boundary layer. 

Since Tani's review, there have been several experimental studies throwing 
additional light on the bubble properties, the most recent being that of Arena & 
Mueller (1980). On the theoretical side an important contribution was made by Briley 
& McDonald (1975), who used both an interactive boundary-layer approach and a 
Navier-Stokes theory. Kwon & Pletcher (1979) have tackled similar problems using 
an interactive boundary-layer approach and allowing the displacement thickness to 
modify the external velocity. Both of these studies concentrated on the calculation 
of long bubbles and made some use of the measured pressure distribution on the 
airfoil. The study conducted by Crimi & Reeves (1976), on the other hand, examined 
the calculation of short bubbles using an integral method which included the effects 
of viscous-inviscid interaction. The separated laminar shear layer, transitional flow 
and turbulent reattaching flow are represented in their method, and solutions were 
obtained using an  iterative procedure with strong interaction effects limited to the 
immediate vicinity of the separation bubble. 

I n  this paper we consider the calculation of long bubbles by using an interactive 
boundary-layer theory and present results for conditions which correspond to the 
measurements of Gault (1955) in the flow around an airfoil a t  Oo and 2' angle of attack. 
Standard and inverse boundary-layer procedures, with an algebraic eddy-viscosity 
formulation, are interacted with perturbations of the potential-flow solutions found 
using the conformal-mapping method of Halsey (1979). The calculated and measured 
results are compared, and experiences with the use and interaction of the numerical 
methods together with the accuracy of a turbulence model, including the transitional 
region, are described and discussed. 

2. Governing equations 
For two-dimensional steady incompressible flows, the boundary-layer equations 

are well known, and, with the eddy viscosity (E, )  concept, they can be written in 
the form 

-+- = 0, (1) 
au av 
ax ay 

u-+v- au au = u >+- du a b -  au 
ax ay e dx ay( ay)' 

where b = v+ 6,. In  the absence of mass transfer, (1) and (2) are subject to  boundary 
conditions given by 

(3) 

I n  (3), the external velocity distribution ue(z) is obtained either from experiment 
or from inviscid flow theory. I n  the latter case it is often necessary to consider the 
effect of the boundary layer on the calculated external velocity distribution and this 
can be done in several ways. The procedure used here and by Veldman (1979) and 
by Cebeci, Stewartson & Williams (1980) is to write the edge-boundary condition, 

1 u = v = o  ( y = O ) ,  

u = u,(z) (y = 6).  
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with uO,(x) denoting the inviscid velocity distribution and u c ( x )  the perturbation 
velocity due to the viscous effects, as 

U e ( Z ,  6)  = U , ( X )  = uO,(x) +u,(x) (4) 

and compute u, from the Hilbert integral 

where (d/dx) (u,S*) is the blowing velocity used to simulate the boundary layer. 

limited to  a finite range x, ,< x ,< xb. This allows us to rewrite (5a )  as 
We assume that the effect of the bubble is local, so that the interaction region is 

1 Q d  du  
u,(x) = - -(u,6*)-. 

n j x ,  du x-u 

Following Veldman (1979) and Cebeci et al. (1980), we write (4) and (56) as 

n 

j=1 
u,(x, 6 )  = UO,(X) + x cij(u,6*)j. 

Here cij denotes the interaction-coefficient matrix, which is obtained from a discrete 
approximation to the Hilbert integral in (5b) .  In  this form, (6) provides an outer 
boundary condition for the viscous-flow calculation which represents the viscouslin- 
viscid interaction. 

2.1. l'urbulence model 

The presence of the eddy viscosity em requires a turbulence model; in our study we 
use the algebraic eddy-viscosity formulation developed by Cebeci & Smith (1974). 
According to  this formulation, em is defined by two separate formulas. I n  the so-called 
inner region of the boundary layer (em)i is defined by 

where 

In the outer region (em)o is defined by 
roo 

Here a is a constant equal to 0.0168. The condition used to define the inner and outer 
regions is the continuity of the eddy viscosity; from the wall outward (em)i is applied 
until 

I n  (7)  and (9) ytr is an intermittency factor that accounts for the transitional region 
that exists between a laminar and turbulent flow. Several expressions are available 
for this purpose, and here we have chosen that suggested by Chen & Thyson (1971). 

(10) 
It is given by 

y t r =  l-exp[-G(x-xtr)j  -1. 

= (em),,, which defines y,. 

dx 

xtr ue 
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Here xtr is the location of the start of transition, and the empirical factor G is given 

Q = -3R--1.34 1 u3 
1200 v 2  xtr 

The transition Reynolds number is defined as R,, = (uex/v)tr. Equation (10) assumes 
that the extent of the transitional region, with subscript t denoting the end of the 
transition region, is 

60% xt-xtr = - 
R$t3 ' 

In  terms of Reynolds number, (12a) can also be written as 

Equation (10) is based on empirical data in which transition from laminar to 
turbulent flow takes place naturally, that is without tripping the boundary layer or 
without flow separation. How good it is for flows in which transition is caused by 
laminar-flow separation needs to be explored, as we shall see later in the paper. 

2.2. Transition prediction 

The solution of ( 1 )  and (2) requires the specification of the transition point, and 
empirical methods can be used for this purpose. That described by Cebeci & Bradshaw 
(1977) agrees with the predictions of the e9 method and is given by 

Rot= = l.l74[l+-]R$F 22 400 

RXtr 

This correlation formula works reasonably well for flows in which transition is 
upstream of flow separation. However, if the separation precedes transition, then the 
solution of the boundary-layer equations break down, owing to the singular nature 
of the equations at separation, when the external velocity is given and (13) cannot 
be used. As a result, the laminar separation point is often taken to be the transition 
point. In general this is a useful assumption, but it has the drawback that it assumes 
transition to be independent of the Reynolds number in a separating flow. Kwon & 
Pletcher (1979) overcome the difficulty about the singularity by solving the equation 
in the inverse mode and are thereby able to use (13) in the post-separation zone. As we 
shall see, the specification of transition point in such flows is a matter of some delicacy 
so far as computations are concerned, a slight error leading to substantial changes 
in the flow field. The formula (13) is rather insensitive to xtr because 8 changes only 
slowly in this region. Kwon & Pletcher appeared to fix transition with their first 
estimate of S*, which implies that they have to rely to some extent on experimental 
evidence. 

An alternative procedure for predicting transition in a bubble is to assume that 
the mechanism is similar to that occurring downstream of an element of surface 
roughness. In such a situation the flow separates at the roughness element and 
reattaches further downstream. The separated flow is initially laminar and less stable 
than an attached boundary layer, so that transition is triggered there. Based on this 
hypothesis Crimi & Reeves (1976) recommended the relation 

for computing the transition location in.a separation bubble near the leading edge. 



Separation bubbles in two-dimensional flows 309 

Here yu-o represents the y-distance (y > 0 )  where the streamline velocity u vanishes, 
and the subscript s denotes the location of separation. In  our calculations, we compute 
the right-hand side of (14) a t  the first x-location where the flow separates. At that  
station and a t  subsequent stations, we also compute the left-hand side of (14) .  
Transition is assumed to occur when both expressions are equal. From a computational 
point of view (14) has the advantage that the onset of transition is defined more 
clearly since yu-o increases sharply downstream of separation. 

3. Solution procedure 
As in previous studies (see e.g. Bradshaw, Cebeci & Whitelaw 1981) we use 

similarity variables to transform the governing equations. This also allows us to start 
the calculations easily at the stagnation point and to take larger steps in the 
streamwise direction. With the definition of stream function y? and Falkner-Skan 
transformation, 

(15) 7 = ( ~ y y j  ~ l .  = ( u e v x ) ~ f ( x , ~ ) ~  

( 1  )-(3) become 

(bf”)’ +$(m+ 1)ff” + m [ l  - (f’)2] = x (f’z-f’’~ af’ 

Here a prime denotes differentiation with respect to 7,  and m is a dimensionless 
pressure-gradient parameter defined by 

We use this form of the equations to obtain the boundary-layer solution for a given 
pressure distribution, which for brevity we call the standard problem. When we solve 
the equations with the interactive viscous effects, an inverse method is used and we 
find i t  convenient to solve the equations expressed in primitive variables. With uo 
and L denoting a reference velocity and length respectively, we define dimensionless 
Y and stream function F(x, Y) by 

Equations ( 2 )  and (3), with a prime now denoting differentiation with respect to Y ,  
become 

F = F = O  ( Y = 0 ) ,  1 

I n  terms of dimensionless quantities (denoted by bars), with D representing Ye FL - F 
(4) and ( 5 b )  can be written as 
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As shown by Cebeci et al. (1980), (6) can be expressed in the dimensionless form 
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where cii = cii/R‘$, xi denotes the station x where the equations are being solved, and 
the known parameter gi is given by 

Here c i k  are the fixed interaction coefficients, whose evaluation is described by Cebeci 
el al. (1980). 

An iterative solution procedure is employed in which successive sweeps of the 
boundary-layer calculation are performed using (23) and (24) to define the interaction 
between the viscous and t,he inviscid flow regimes. Thus, for any given sweep, D(xk )  
denotes the values computed for the cuirent sweep, while DB(xk) denotes the values 
computed for the previous sweep. 

To solve the equations for the standard and inverse problems we use Keller’s box 
method, which is described in detail in several references (e.g. Bradshaw et al. 1981). 
The inverse procedure employing the Mechul function has also been described in the 
latter reference, and the following paragraph explains the numerical formulation. 

According to the box method we first reduce (20)-(23) to a first-order system. With 
ue, F and F represented by w, r and v respectively, we write 

F =  r ,  r’ = v, w’ = 0, (25% b, 4 
dw ar aF 

(bv)’+w-- = r--v-, 
dx ax ax 

F = r = O  ( Y = O ) ,  (26 a )  

re = we, ye-Cii( Yere-Fe) = gi ( Y  = Ye). (26b) 
- 

The numerical solution of the system given by (25) and (26) is described in 
Bradshaw et al. (1981). A feature to note is that in the recirculating region the 
convective term r(ar/ax) is set equal to  zero, following the FLARE approximation. 
Because the separation region is small, no attempt was made to improve the 
approximations resulting from that assumption. 

4. Results 
The evaluation of the method described in previous sections is made for the 

experimental data of Gault (1955), which were obtained on an NACA 66,-018 airfoil. 
For two angles of attack, u = 0’ and 2 O  a t  R, = 2 x lo6, the data include pressure 
distributions and velocity profiles in the separated-flow region, which covers about 
10 % chord, extending from s/c = 0.62 to 0.725 for 01 = 0’ and from s/c = 0.61-0.715 
for u = 2’. Note that we now use s to denote surface distances in order to distinguish 
i t  from the chordwise distance x used for airfoils. At higher angles of attack, the 
separation bubble moves very close to  the leading edge. I n  this case, the separation 
region is limited to about 2 yo chord. Experimental data also contains separation and 
reattachment points as well as transition points a t  several chord Reynolds numbers. 

The converged solutions were found to be very sensitive to the transition location 
used in the boundary-layer calculation. If the transition location is specified a short 
distance upstream of the laminar separation point, the size of the separation bubble 
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Sweep no. 

/ *  1.0 r 

31 1 

FIQURE 1. Variation of wall-shear parameter Fk with number of sweeps for a = 0, R, = 2 x lo6. 

is reduced or eliminated entirely. However, if the transition location is specified a 
short distance downstream of this point, the separated region will grow with each 
sweep, and the solution will eventually break down. The empirical formula given by 
(14) has therefore been used to specify the transition location. 

The calculations in our study were first made by computing the pressure distribution 
for the NACA 66,-018 airfoil shape a t  a specified angle of attack by using Halsey's 
(1979) conformal-mapping method. Since the location of transition was not known 
prior to the boundary-layer calculations, solutions were first obtained for the specified 
inviscid pressure distribution by using the standard method : then transition was 
computed from (13). However, in the test cases considered in this paper, namely 
a = 0' and 2 O ,  laminar separation took place before transition could be computed 
from that equation. Therefore transition was taken to be the laminar separation point 
for the first iterative sweep. 

The subsequent iterations were performed by using the standard method from the 
stagnation point up to s / c  = 0.30, at which point the inverse boundary-layer 
calculations were started and continued to the trailing edge. If a region of separated 
flow was found to exist, then the new location of transition was determined from (14) ; 
otherwise the laminar separation point was used. After the completion of this first 
sweep, the following sweeps utilized (14) until the solutions converged. 

Figures 1 and 2 show the calculated and experimental results for a = Oo. Figure 
1 shows the computed wall-shear parameter Fk for several sweeps on the airfoil, and 
figure 2 allows comparison of calculated and experimental velocity profiles a t  
different streamwise locations. From figure 1 we see that, in sweep 1 with transition 
corresponding to laminar separation, the inverse calculations do not contain a 
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FIGURE 2. Comparison of calculated (solid line) and experimental (symbols) velocity profiles for 
a = 0, R, = 2 x lo6 after 15 sweeps. 

separated region. However, in the second sweep, the calculations contain a small 
separated region with transition location still at s / c  = 0.66, indicating that during 
that sweep (14) did not indicate any transition. The third set of calculations (not 
shown on the figure) contain a larger region of separated flow with transition location 
computed by (14) to be at s/c = 0.69. Table 1 presents the location of transition as 
a function of sweep number. It indicates that  after sweep 6 the transition location 
remains unchanged at s / c  = 0.67. Figure 1 also shows that the overall solution 
converges after about ten sweeps. According to the results of figure 2, the agreement 
between computed and measured velocity profiles is good, apart from the last 
streamwise station s / c  = 0.724, where the calculations and experiment indicate 
different reattachment locations. This flow was also studied by Briley & McDonald 
(1975), who solved the full Navier-Stokes equations near the separation bubble using 
a one-parameter mixing-length profile, and by Kwon & Pletcher (1979), who, like us, 
used an interactive boundary-layer approach. In  both studies the velocity profiles 
were essentially indistinguishable from ours, but the skin-friction coefficients differed 
significantly. The experimental position of separation and reattachment differ from 
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Sweep @/c) t r  

1 0.66 (laminar separation) 
2 0.66 
3 0.69 
4 0.68 
5 0.68 

G15 0.67 

TABLE 1. Variation of transition location for different sweeps for a = 0' 

FIGURE 3. Variation of wall-shear parameter FG with number of sweeps for a = 2, R, = 2 x 10'. 

the positions predicted by the theories and it is not possible to decide which is in the 
best agreement. 

Figures 3 and 4 show comparisons similar to those in figures 1 and 2 for a = 2 O ,  
and table 2 presents the location of transition as a function of sweep number. The 
agreement between calculated and experimental velocity profiles, as in the case of 
a = Oo, is again very good except for the last station where the boundary layers 
attach. Again the transition location computed according to (14) settles down at  
s/c = 0.67, and remains unchanged with sweep number after ten streamwise iterations. 
We also note from figure 3 that the dip in wall shear is quite large with computed 
separation and reattachment points differing from those of measured ones. 

Figures 5 and 6 show a comparison between calculated and measured pressure 
coefficients 1 - C, for a = 0' and 2' respectively. Also shown in figure 5 is the pressure 
coefficient computed by Briley & McDonald. As is seen, the difference between two 
computed pressure coefficients is considerable, although their computed velocity 
profiles for this case also show good agreement with experiment. The difference 
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FIGURE 4. Comparison of calculated (solid line) and experimental (symbols) velocity profiles for 
a = 2, R, = 2 x lo6 after 15 sweeps. 

Sweep (S /C) tr  

1 0.67 (laminar separation) 
2 0.68 
3 0.68 
4 0.67 
5 0.67 

6 9  0.66 
l(r19 0.67 

TABLE 2. Variation of transition location for different sweeps for a = 2' 
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FIGURE 5 .  Comparison of calculated viscous (solid line) and measured (symbols) pressure coefficient 
for a = 0, R, = 2 x lo6. Calculation of Rriley & McDonald (1975) (dashed line). 

2 .o 

1.5 

T 1.0 - 
0.5 

0 0.2 0.4 0.6 0.8 1 .o 
S I C  

FIGI:RF: 6. Comparison of calculated viscous (solid line) and measured (symbols) pressure 
coefficient for a = 2, R, = 2 x lo6. 

between the present calculations and those observed by Briley & McDonald, however, 
can be attributed to the initial external velocity distribution used in both studies. 
While the present st,udies used a pressure distribution computed by an inviscid code 
due to Halsey, the studies of Briley & McDonald and also those by Kwon & Pletcher 
used the pressure distribution corresponding to R, = 10 x lo6 measured by Gault 
(1955). A comparison between those pressure distributions and the ones computed 
by the inviscid code shown in figures 7 and 8 indicate considerable differences between 
them in the region where the velocity is nearly flat. 

The principal conclusion to be drawn from the present study is the crucial role 
played by the choice of transition in determining the flow. Thus, if str is fixed a t  0.69c, 
the iterations do not converge when a = 0, whereas if i t  is fixed a t  0.66c, where 
laminar separation occurs, the inverse calculations do not contain a separated region. 
The choice of str is clearly linked to that of the turbulence model, especially the 
intermittency factor Ytr, and it is interesting that all three methods of computing the 

11 BLM 131 
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2 .o 

1 .s 

0.5 

0 
s lc  

FICTJRE 7 .  Comparison between measured (symbols) pressure coefficient a t  R, = 10 x 106 and 
inviscid calculation (solid line) for a = 0. 

0 

0 1 I I I I I I I I 1 

0 0.2 0.4 0.6 0.8 1 .o 
s lc  

FIGURE 8. Comparison between measured (symbols) pressure coefficient at R, = 10 x lo8 and 
inviscid calculation (solid line) for a = 2. 

flows compare with experiment in roughly the same ways. The velocity profiles 
correlate equally well and the separated region is shifted downstream by about the 
same amount. The primary cause for the discrepancy probably lies in the estimate 
of the laminar separation point, which is a t  s = 0 . 6 6 ~  when a = 0'. The discrepancy 
between the pressure distributions computed according to inviscid theory and 
measured at  R = lo7 is surprising since i t  is confined to the central portion of the 
airfoil, the variations near the leading and trailing edges being in accord. I n  principle 
the same methods may be applied to study short bubbles near the leading edge of 
thin airfoils, and we hope to carry out this task in a later paper. It will be interesting 
to examine whether the formulaions we have been using have a more general validity 
and to compare their merits with the integral formulation of Crimi & Reeves (1976). 
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